Quote:
Originally Posted by co_driver
Also note that there is another component that is often overlooked: a 'viscous' drag - a velocity component in the equation:
F = 'rho'/2*cDA*v^2 + cV*v + m*g*cF
|
Is there a simple way to get the viscous drag component? I have seen where people get the rolling resistance by warming up their car and stopping in a level area (parking lot), and then either push or pull the car with a scale to see what the resulting rolling resistance would be. Would a person be able to get the rolling resistance this way, and then calculate the viscous drag from the equation above? It should work. Is there a more simple way? Does viscous drag account for much, or is it able to hide in the cDA component ealily?