Throw out a better video of a Model X towing test vs a diesel.
https://youtu.be/bcfb5Hak78Q
This video touches better on what I was trying to figure out. Does towing effect a modern diesel vs a modern gas, vs a modern electric differently? This video seems to show exactly that, so the question is why? The only thing I'd like to see different in this is a more aerodynamic diesel. The towing penalty difference may only be due to the bigger change in aerodynamics from the X alone to the X towing.
Using the tool here on ecomodder I realized, duh, that towing the same load, on the same road, at the same speed, requires the same amount of energy assuming the tow rig weight is similar and the trailer is sized large enough to be the controlling factor in aerodynamics.
So in the video I posted say the total weight for the model X and camper is 9000 pounds, and that trailer is 49 sq ft with a .45 Cd. That means towing it at 65 mph uses about 40 kW. The only difference with say my Touareg towing that trailer would be slightly less weight (450 pounds) so it would use 39.7 Kw at 65 mph. According to the calculator and assuming say 30% engine efficiency for a 2012 3.0 VW TDI (It might actually be better than that) gives me 17.7 mpg towing. Taking off the trailer the program spits out 18.7 kW and 37 mpg at 65 not towing which is actually about what I see on the gauge on a flat steady 65 mph run. My Touareg has better aero than a Land Cruiser but not as good as a Model X. The Model X alone at 65 shows it needs just under 15 Kw to go 65.
So the Tesla goes form 15 kW to 40 kW
now figure it's overall 85% efficient at changing battery energy to the pavement.
That means it uses 17.6 kW to go 65 miles empty and 47.1 Kw to go 65 miles towing.
that 167% more used or 37% as much range available depending on how you want to look at it. Notice in the video I posted they used 48.1 kWh/100km towing which is pretty close to the calculator although I don't know what speed they were at. Their unloaded is what was much worse at 24.9 kWh/100km, I'm not sure how to account for that. Maybe the terrain, maybe A/C, maybe a model X isn't really .24 Cd as claimed real world?
My Touareg goes from 39.7 to 18.7 kW
That's only 113% more but that's all due to I need more kW unloaded because of the bad air. Plugging in an identical gas Touareg with less thermal efficiency and lower energy density fuel still makes the exact same 113% more energy needed to go from unloaded to towing because the required energy doesn't care where the energy comes from it's just the energy required.
That was one of my misconceptions. An EV doesn't take a bigger hit when towing, nor does a gas vs diesel. Or a steam vs hydrogen for that matter. In the real world there might be more difference between an 85% efficient EV still having the exact same 85% efficiency where the gas or diesel may move into a better BFSC with load, that may take a whole other post LOL! What is the case is an aerodynamic car does take a bigger hit when towing an un-aerodynamic trailer. Also a small frontal aera car will take a bigger hit when towing a big frontal aera trailer. Basically where you would see the least towing penalty in the recreational category would be a Hummer H2. It's all to do with the Hummer being bad not towing than it is that the Hummer would be any better while towing. No matter what it is doing the towing, while towing it takes that 40 kW to do it. An electric Hummer would just use 26.2 kW not towing, only a 53% increase.
So my other misconception is just how little energy a 100 Kwh battery pack contains in relation to a gallon of diesel. The model X is running on a 2.63 gallon tank. Even less if you consider you shouldn't use 100% of the energy without ruining it. Or you could say my Touareg has a 1000 kWh "battery" that weighs under 200 pounds and can be fully recharged from 0-100% in 3 mins.
Where that is amazing as aerohead points out, is the Model X really goes a long ways on just 2.63 gallons equivalent. If they could get the energy density about double and then the charge speed up about 10 times faster, there would be no problem.
The one thing I did understand is that recharge time is the real downfall. As it stands now my Touareg recharges at a 300 times faster rate on a kWh basis.