View Single Post
Old 09-03-2020, 03:43 AM   #18 (permalink)
Nautilus
EcoModding Lurker
 
Join Date: Dec 2016
Location: Romania
Posts: 45

Simba - '05 Seat Leon FR
Thanks: 22
Thanked 29 Times in 17 Posts
If the Bugatti 100P didn't fly in the original 1939 configuration, there is another plane which made good use of similar drag reduction for aerodynamics and cooling: the P-51 Mustang.

The Mustang wing was a high lift
configuration, as well as low drag. . . the Mustang in squadron service
was not laminar to the same extent as the wind tunnel development
models. Not one day in the past 34 years (the book was written in 74)
has it performed in that manner for any or all of the reasons just
given.

So if it wasn't the laminar flow wing that gave it it's high speed and
extensive range, what was it?

The most prominent speed secret was the dramatic reduction of cooling
drag. Placing the airscoop on the belly just in front of the rear edge
of the wing removed it as far as was practicable from the turbulence of
the prop and placed it in a high pressure zone which augmented air
inflow. Tests in the wind tunnel with the initial flush mounted scoop
were disappointing. There was so much turbulence that cooling was
inadequate and some doubted that the belly scoop would work. The
breakthrough was to space the scoop away from the surface of the belly
out of the turbulent boundary layer of the fuselage. Further testing
showed that spacing it further out would increase cooling but at a cost
to overall drag. Various wind tunnel tests established the spacing at
the current distance which represents the best compromise between
spacing out from the turbulent flow of the fuselage, drag and airflow.

With the flow into the scoop now smooth and relatively nonturbulent,
the duct leading to the radiator/oil cooler/intercooler was carefully
shaped to slow the air down (the duct shape moves from narrow to wide,
in other words a plenum chamber) enough from the high external speeds
to speeds through the heat exchangers that allowed the flow to extract
maximum heat from the coolant. As the air passed through the radiators
and became heated, it expanded. The duct shape aft of the radiator
forced this heated and expanded air into a narrow passage which gave it
considerable thrust as it exited the exhaust port. The exhaust port
incorporated a movable hinged door that opened automatically depending
on engine temperature to augment the airflow. The thrust realised from
this "jet" of heated air was first postulated by a British
aerodynamicist in 1935. The realization of thrust from suitably
shaped air coolant passages is named after him and called the "Meredith
Effect". Some have said that at certain altitudes and at a particular
power setting the Meredith effect was strong enough to actually
overcome all cooling drag; this is not regarded as being accurate by
most aerodynamicists. It greatly contributed to overall efficiency of
the cooling system but never equaled or overcame cooling drag.
  Reply With Quote