Quote:
Originally Posted by M_a_t_t
I would think the induced drag would outweigh any benefits in fuel economy gained by lowering the rolling resistance.
|
I was looking at the 2015 Yukon Denali, tested by CAR and DRIVER.
This is a little larger SUV than the Tahoe, and a curb weight of 6,060-pounds.
EPA test weight would be 6,360-pounds.
For it's frontal area estimate, and using Cd 0.36, aerodynamic road load @ 70-mph is 67.72% of overall load ( 29.798- horsepower, leaving 32.27% for rolling-resistance ( 14.2- horsepower )
Should there be one particular airfoil design, superior to all others, which, say, produced an evenly-distributed 3,180-pounds lift, then rolling resistance could be cut in half, and the lift-drag table for that airfoil would indicate the required power to create that magnitude of lift. Then it would be a matter of comparison, to establish your cost-benefit ratio.
If you drove into a chain-reaction rear-end collision, involving a breached cooling system, and had to maneuver on top of a glycol-wetted road surface, I can't imagine a sensor package which could identify this as a threat, reacting spontaneously, such that it could avoid catastrophe.
Product-liability attorneys would be all over that. A 'rainmaker'.