![]() |
350-400VDC vs 700-800VDC?
Hello all,
I had posted a while back about trying to run two Leaf motors paralleled off a single inverter (short answer: not usually, but might be worth the experiment), and then asked a separate question about higher voltages that I think deserves to be split out on its own. My questions are: what safety/regulatory implications arise from the increase, other than the vague "higher voltages are bad, m'kay?" I know from poking around at NFPA and similar regulations that it moves from a Level 2 risk to a Level 3 risk (for UPS battery systems), and that going to higher than 650V requires higher-rated tools like voltmeters and such to avoid internal tool damage. What extra risks are present on the EV itself? Porsche recently unveiled an 800VDC EV concept, and I've found inverters/converters/etc. for 700-800VDC input continuous, 1000VDC transient, presumably for big transit buses, where the power levels make downsizing the current required really attractive. I would intend to set it up so that the two packs only join up in either the inverter enclosure or a separate "high voltage control box" before going a short distance to the inverter, so no two wires in close proximity have 800VDC across them, and any single wire has at most 400VDC to ground or a nearby wire in case of a fault. I could re-use OEM plugs and sockets that way - no re-engineering needed. If the hazards aren't really any worse, nor a potential regulatory hurdle (for shops working on it? Dunno, I'd be DIY so not really subject to the regs) then that combiner box could be further away from the inverter box, potentially simplifying cable runs and parts layouts. Charge in parallel at "normal" OEM charger voltages, etc. See, MPaulHolmes is working on his 200kW inverter, and to get that power (minus inefficiency) out of a single Leaf motor (or Volt motor, or other OEM motor of similar power ratings) without absurd phase currents, it would seem going to a higher voltage to allow extending the constant torque line up the RPM band would be "easier". Basically, take two OEM EV battery packs (Leaf, Volt, etc.) and connect in series, roughly doubling the RPM at which the constant torque can be maintained. I already want more range than one OEM pack can give me, so why not connect in series instead of parallel? 80kW is plenty for steady-state operation under most scenarios for my (still theoretical) planned build, and 100kW would not take much increase in cooling capacity either. Depending on how the efficienty islands act above the currently plotted ones for, say, the Leaf motor, running at higher power ratings at higher RPM's with the same phase current that it can handle 80kW at now shouldn't overheat it. I doubt I'd want to spin the motor much/any faster than stock RPM limit, though, because bearings/balance. (I wonder what an IPM rotor coming apart at 20kRPM would do? I think the stator and housing could contain it...) A Chevy Spark EV motor only spins 4500RPM now, so increasing that isn't too bad. (DC brushed motors with armatures that diameter spin up to 7K without too much extra work into them.) Thoughts? |
No idea myself, but I need to learn. There is this:
http://ecomodder.com/forum/showthrea...ors-33661.html Three pages of posts by oil pan 4, EVmetro and thingstodo. Check out EVmetro's build threads; he does really high-quality work. |
800 VDC presents an extreme arc flash hazard.
The other thing is can the motor insulation take double the voltage? To me doubling the voltage and increasing the amount of heat put off by the windings is a recipe for short motor life. Are the wound rotors brushless? In industrial motors only specialized ones can be started on double voltage. And this is only allowed for a few seconds. Any normal motor would be damaged and quickly ruined by double voltage. Also you should take into consideration that it appears that all these motor drive bits and pieces were designed to prevent anyone from swapping parts around like this. With electric vehicle motors and drives these motor and drive sets appear to be designed specifically for each vehicle. Higher voltages are not inherently bad. Anything over about 90vdc is easily deadly. It's once you start going over 600vdc that you go from deadly to spectacularly dead with bonus fireworks show when there is a fault. |
other than the propensity for arc flash at unexpected times, I see a chance of generating Gamma rays at 1 KV. shielding mitigates most of that, but expensive and heavy.
The other problem I see is physically maintaining insulation. lots of common and available stuff just isn't feasible above 600v. Hv stuff is expensive if you don't have space. OTOH running 2 separate packs until just at the controller might work, kinda. isolating the 2 packs is an interesting thought puzzle. and extraneous leakage is just plain ugly. |
oil pan 4:
Quote:
I'll have to do some digging to figure out the insulation rating on the stators. Is there a relatively easy way to determine the peak transient voltages seen in a given motor/inverter system? That's the real issue - making sure a higher voltage system doesn't drive transients up to "blow a hole in the insulation every time you jam on the regen at freeway speeds" levels. Doubling the voltage does not directly double the heat - generally heat is I^2R losses. I'm trying to go up in voltage to avoid going up in current. That said, without controls, doubling the voltage will likely double the current the motor will take (based on higher input voltage vs. BEMF at a given RPM). Either way, I am looking at more heating based on increased power output at a similar or slightly lower efficiency, depending on load and RPM. It'd be interesting to find out if that heating increase is more or less than mechanically paralleling two entire electrically separate motor/inverter systems. Using two systems would only double the total heating at any given operating point - though the two systems may run at a less efficient point lower on their operating curve than the one bigger system, thus increasing the nominal heating losses. I just want to make sure I keep the rotor below the point where the magnets get very unhappy. I'd prefer to go with an induction machine, but so far all the OEM's are still using IPM rotors to get the power density, IIRC. Quote:
Quote:
Quote:
Quote:
|
Piotrsko:
Whoops, didn't see yours until my previous posted. Quote:
Quote:
Quote:
|
Sounds to me like the trade-off is thinner wires with thicker insulation.
What vehicle is the 'one-off custom'? An FJ40? You could use two single-speed MGR instead of over-stressing one. |
freebeard
Quote:
Quote:
I'm sticking with a transfercase and gearbox at the moment. Motors aren't quite there yet in power-density plus speed range for me to stick 1 per corner or 1 per axle and still have both rock-climbing ability and freeway speed capability without changing gears. With 35" tires, I need 576 RPM at 20kw continuous per wheel to do 60mph. To climb rock walls, I need 3250 ft-lbs per wheel (assumes full 6500 ft-lbs driveline torque in 1st-low with stock engine/gearing, and 2 tires in contact with the obstacle being climbed). Gimme a motor that can do that, at less than 100lbs per motor, and less than $2000 per motor/inverter set, and I'll seriously consider wires and cooling lines instead of driveshafts. |
DC jumps gaps much better than AC.
Higher voltage DC will also establish an arc and will maintain the arc until the power is turned off. When dealing with batteries this presents an obvious problem. I have seen double voltage starting only on direct drive. But I have seen inverter duty motors that have the option for parallel or double voltage starting. Double voltage starting on inverter motors is out there but I have not seen it. My DC stick welder that I built runs up to 125VDC open current. It can throw a pretty good arc. Also most wire is only rated to 600v. For anything up to around 144vdc I would just use a normal wrench wrapped with electric tape and welding protective gear for making the energized connections. For 100s upon 100s of volts NFP70 arc flash stuff should be uses which is pretty much like wearing a bomb disposal set. If I were going to build an electric vehicle I would stay between 48 and 144vdc since it is relatively easy to work with and all the parts are off the shelf. |
oops didn't mean gamma rays.
look up typical magnet wire properties on Google. FWIW, I believe the higher voltage motors just use additional coats of varnish after winding. Over on the DIYelectric site someone was commenting about some motor (honda?) has an inverter that doubled battery voltage to 500, so I would bet that 750 isn't unreasonable. You can also get motors rated for 408 vac which is almost 600 peak to peak. Some VFD's will run on DC, but make poor car controllers. I still cant figure out a separation scheme for series batteries. based on my experiences, it is hard to not get full voltage leakage to somewhere. and high voltage high current stuff is $$$$$. |
Piotrsko:
Quote:
Quote:
I guess it boils down to, which costs more: engineering a safe 720-800VDC EV system to raise the power of a single motor without excessive current/heating, or running dual motors to share the current at 360-400VDC - whether they parallel off a single inverter or have to use two separate ones. Either way, I hope to beat the ~$9550 for a 123kw peak/~56kw continuous output HPEVS system, consisting of an oil-cooled AC-35x2 (basically two AC-35 stators in one housing with two rotors on a common shaft) motor and dual water-cooled Curtis 144V/500A controllers. (oil pan 4 - this is the sealed regen-capable off-the-shelf solution I am trying to beat.) One Nissan Leaf motor can get me 80kW continuous - we don't know peak yet. |
I have no expertise on this subject, but lots of interest in seeing someone give it a try!
There should be multiple safety systems in place to protect from these voltages. Even though I have been extremely attentive while handling supercapacitors, I have twice accidentally arc'd the pack with a brief but spectacular display of sparks... on just 13 volts. The safety systems should allow a tired brain to make mistakes, forget things, and still remain safe. How about making the double-voltage system and doing a series of increasing tests to verify all components are able to handle it? If some measured parameter approaches a limit, either engineer a solution, or abandon the idea and go dual motor / parallel batteries. |
Found one at 576VDC!
Somebody did a higher-voltage DIY EV, in Australia!
Tuarn Brown's 1982 Suzuki Sierra SJ40 It's a 576VDC direct-to-transfercase AC Suzuki 4x4. Can do ~50mph at 4000RPM, which is apparently the limit for that motor/controller/voltage combination. Built using industrial drive and motor. 6x 96V packs, tied together in a junction box by the drive to keep any single wire's potential as low as possible. Apparently has contactors in each 96V box to separate into a total of 12 48V modules. Can charge with 48V. Started out as a 600VDC pack nominal, in two 300VDC strings, to keep the max voltage potentials outside the junction box basically the same as 240VAC mains (max peak of AC vs the DC). Dropped it to 576VDC due to not being able to use all the regen the drive was capable of. Voltage chosen to match the most common/least expensive industrial VFD's. I can't seem to find the thread where they went into the drive to get at the DC bus. Huh, seems this person also at some point used a 240VAC-500VAC multitap transformer, plus a rectifier and some other bits, to feed voltage to the motor-side of the controller, and used it as a charger for the full 600VDC pack. Dropped it as being less efficient and more dangerous than charging at lower DC voltages to separate strings. Red Suzi - The Australian Electric Vehicle Asn - Page 1 Very nice buildup - and exactly what I was thinking in terms of separating the pack, keeping the potential voltage across any given points as low as possible, etc. though the builder used common industrial boxes and conduits and such, rather than repurposed OEM bits. 576VDC at stock current levels ought to push a Leaf motor to ~118kw output without increasing heating overmuch. Now going to 200kw doesn't seem that much of an over-current push for short-term acceleration. redpoint5 - as for build and test and rebuild and retest, well, I won't want to spend forever working on it. I will try to engineer it all up front. This Suzuki example - which passed Australia's somewhat stricter vehicle modification laws - seems to be as clean a setup as I can find. I can probably figure out how to start at a single pack voltage, then go to double pack voltage later, so long as I have two packs of similar condition so they work well in series. |
The industrial VFD I work with use up to 700vdc but that voltage is contained within the drive it's self and then only produces 480 volt 3 phase out to the motor.
|
Quote:
It may be a bit heavier than it needs to be, so it may take a bit more power to move it. But if you are building a daily drive that you need to be reliable .. over-built with much room for error is GREAT! Quote:
Quote:
Here's the manual - page 51 shows DC+ and DC- terminals on the drive http://206.72.118.208/legacy%20liter...n%20Manual.pdf Quote:
|
oil pan 4:
Quote:
thingstodo: Quote:
[QUOTE]13 contactors is a lot of contactors for the series string. Does that mean 24 contactors to put the packs in parallel? WOW.[\QUOTE] Maybe? Not sure - posted total drop through all the contactors, cables, etc. in series was only ~2V tops. Peak current to the motor was 97A, so they are not large contactors. Quote:
Quote:
|
800volts is extremely dangerous. it would be very hard for you too achieve this safely. understand that copper expands too 64,000 times its volume when its vaporized by an arc flash. this can easily maim you, and easily kill you.
i suggest sticking to lower voltages, because one mistake at this level could easily lead you too being stuck in a 6v EV for the remainder of your days. (powerchair) |
MightyMirage:
Thank you for your reply - caution is merited here. Apologies if this comes across as a bit snippy: I understand that it is dangerous, I'm looking for more detail on that danger. There are plenty of responses in this thread and others already that say "high voltage is dangerous". So is gasoline, and people blithely handle pumping equipment spewing gallons-per-minute of the stuff every time they fill up their car. The amperage available in an EV battery pack can already cause flash-arc damage or similar effects at much lower voltages - drop a copper bus-bar or a wrench on a battery pack and you're going to have a bad day as the dead-short current capability of modern batteries throws a plasma party. I'm primarily interested in whether there is a difference in the danger other than the ability to jump a larger gap and sustain an arc over said larger gap. The referenced "Red Suzi" thread has some really good detail on minimizing the potential voltage between any two nearby parts, and thus reducing the chance of an arc flash incident. That builder was attempting to keep the DC voltage potential in any given battery box at 24 or 48 volts, to keep it in the "Safety Extra Low Voltage" range below 25VAC/60VDC (though not explicitly stated as such, that was the effect) where no contact protection is required (IEC 60449). Contact protection is required between 25-50VAC and 60-120VDC, per the same standard, but it is still classed as "Extra Low Voltage Class III". It appears that anything above 50VAC/120VDC goes to "Low Voltage Class II", and that rating and protection class are good up to 1500VDC/1000VAC (EN 50110). I'd make sure I'd meet or exceed any contact protection needs, insulation needs, etc. Basically, the reason for the question is that the common 144VDC DIY battery pack size, and common OEM 300-400VDC battery pack size are already in the "Dangerous - special gear required" range - and the exact same standards apply for the full range of 120VDC to 1500VDC. I want to know what the actual additional hazards are when moving from 350-400VDC to 700-800VDC, given that said voltage is still within the same hazard class per international standards. I can read technical standards and documents, but I don't know about all of them - if you can point to reports showing a "danger curve" or similar WRT the voltage in a system, I'd very much appreciate it. All I can find are the aforementioned standards that are biased towards grid-connected wiring, and some Arc Flash Potential calculations that assume 25,000A available fault current. I won't have that much. Maybe 2500A, more likely 1500A or less, since I'll likely be using 50-80AH batteries. Remember also that a properly designed EV battery system will never see full voltage potential anywhere in the HV wiring system when compared to the frame or body panels or 12v wiring system of the vehicle - at least, it won't if there is only 1 insulation fault. The only places you can get the full potential are between the two ends of the battery pack string and associated HV wiring. Have those opposite potential connections enter a control box at opposite ends and the potential for danger outside that control box is minimized. That, as far as I can tell, is the only additional thing to worry about - wider separation between parts. I'd minimize the chance of a short across the pack at any voltage anyway, so it isn't that much more of a hassle. |
Quote:
cajunfj40 -- It's an excellent question and I support your asking it. You're looking for the known unknowns and the unknown unknowns, pace Rumsfeld. I've always wondered about electric boats. Somehow they manage while immersed in an electrical conductor. Jack Rickard, on EVTV, compared the shore line for an aircraft carrier to a Tesla Supercharger cable. Pretty much the same thing. |
Quote:
Quote:
For ship to shore cables, you have IP-ratings for the connectors, proper insulation and environmental ratings for the cable itself, corrosion-resistant terminals, over-current and ground-fault protection circuits (commonly GFI's), etc. A GFI for an EV would probably be a good idea if you have a properly built battery box and you are running greater than 120VDC, though you might drive yourself batty chasing down all the current leaks after a few salt-road winters... I would plan on IP-65+ or NEMA type 6+ or similar liquid-tight style conduit, glands and boxes for all wiring. UL listing for the common liquid-tight conduit is 600V or less, except in neon signs where 1000V is allowed. There may be higher ratings available. 600V might be "enough" of a boost over 350-400V to get where I want, though. that's ~417 amps for 200kw power output from an 80% efficient motor/controller setup. UL may not be the "correct" rating to go by for a car, though - they are looking from a building safety standpoint generally. |
Quote:
the potential energy built up in a 1500amp system at 800vdc is a freight train of pain. i know you don't like hearing this but truly stay away from these voltages unless you are certified. I've been doing high voltage electrical work for ten years, and your asking, on the internet,how to safely wire, insulate, and operate something that can kill you from 5 feet away... Google search the requirements for entering a 10 calorie panel and ask yourself if you really think it's worth it still, because after all, i do believe this is where you would fall. if you have a specific question ide gladly try and answer it for you, though. Quote:
|
MightyMirage, thanks again for commenting. I'll be responding to each bit below. Apologies for the length, I did try to edit it down!
Quote:
Quote:
Using 25 used 8V Leaf cells is 200V, each cell is ~62Ah rated, ~50Ah useable, so 10kwh. I want ~40kwh, so 4 strings. I can connect in parallel or series, but all those cells are there. Roughly 1.1 gallons gasoline equivalent, requires 2 wrecked Leaf battery packs. ~25C doesn't seem out of line for dead-short fault current on cells rated at 4-6C continuous. As for certifications, I have yet to find the correct certs required to work safely on electric buses or the standards to which the internal components/shields/etc. have to be rated to in order to be worked on by an average garage mechanic, which are the closest parallel to what I am contemplating. They are available with 700-800VDC systems, and likely have quite a bit more amperage available - weight takes current to move. Quote:
I found a nice table on Approach Boundaries to Live Parts for Shock Protection that also appears to be geared to protection against Arc Flash, NFPA 70E table 130.2(C). In that table there *is* a more gradual set of steps. From 50-300VAC the chart sets the Limited Approach (have a trained person with you) Boundary at 3ft6in for a fixed, live circuit component. The Restricted Approach (be a trained person) and Prohibited Approach (is what it says on the tin - keep out) boundaries are just "Avoid Contact". Next step up, 301-750VAC is similar, but Restricted Approach is 1 foot, and Prohibited Approach is 1 inch. The next jump is good from 751VAC up to 15KVAC. This doesn't line up with the previous standards I found (no surprise - it is a patchwork out there...) and it sets the "not specified" boundary at 50VAC. That's pretty low. I'd prefer not to have to design to 15,000V, so this sets an upper limit of 750V at full charge/peak regen. Hmm, it seems NFPA 70E-2012 Table 130.4(C)(b) covers DC, and pushes the 1 foot Restricted Approach Boundary up to include 1000VDC. Still no reason to go above 750VDC, though, to limit my AC voltage capability past the inverter. This also possibly shows why forklifts are the voltage they are, in that older charts were at 50VDC for "not specified" and the newer one I found pushes that up to 100VDC. That would track with an 80VDC AC forklift, as the post-inverter voltages ought to be 50VAC or less. This is still pretty low - I've seen no discussion about proper safety gear for working on common over-100VDC pack DIY EV conversions, and all sorts of pictures where if you open the hood you see bare battery connections, or bare controller connections, etc. I've never seen mention of an arc flash hood or coverall. This isn't to say I don't think it needed, just that the awareness isn't out there about it. Like pictures of people welding in flip-flops (ouch!). Hmm, are there any rough guidelines as to how to get a DIY EV system down into the Class 1 (or lower) Hazard/Risk category, in terms of voltage and current capability, or am I committed to at least Class 2 at the common 96-144VDC level and the short-circuit capability of modern LiFePO4 batteries of sufficient capacity for acceptable range/acceleration? I'm shooting for 100-200kW acceleration capability and ~80kw continuous. (a Leaf motor is capable of 80kW continuous without overheating, by way of comparison). Class 1 PPE is pretty reasonable - 12.8oz denim or thicker is "good enough" for many organizatons, though a coverall labeled with the appropriate arc rating would be cheap insurance. Safety glasses are needed anyway for auto work, and it doesn't take much to add a pair of rubber gloves and some insulated tools for the electrical work. If I have to wear an arc hood (Class 2 PPE), or insist that auto mechanics do so, that would likely be an effective barrier to my implementing a Class 2 Hazard/Risk rated installation. Can proper enclosures and de-energizing procedures lower the Hazard/Risk category? There's got to be some way - Nissan mechanics don't wear arc flash hoods when working on Nissan Leafs. Quote:
See, I want to do it right, and a big part of that is doing it safely, and I have trouble letting go of an idea if I can't understand *why* it isn't safe. (NB - doesn't mean I'll do it if I don't understand, just that I'll keep digging until I do understand - or understand that the time required to understand is greater than I am willing to put in - and can then make an informed decision as to whether to proceed.) Books/internet are not real life, yes - but they are the collected wisdom of the experts that have gone before, and provide valuable background information so I can go get practical knowledge of the appropriate type - including certification if necessary - and/or hire out the bits I cannot do safely to someone who can, and/or find out that the requirements make it budget/time prohibitive to move forward. Thanks again, this is very useful info! On a somewhat related note, this has got me wondering about the time as an intern that I got to watch a 15KV substation fed by two separate power grids (the 4 power conduits running from this substation to the plant I interned at were probably 6-8" in diameter) get shut down by the electricians. I had safety glasses, maybe a hardhat. I don't recall any arc flash type gear - everyone else had safety glasses, gloves, maybe a hardhat. I was close enough to see the details of how they used a drill motor powered by an isolated DC system to crank open each set of contacts (in a closed cabinet, motor attached on outside) in the correct sequence. They were safety interlocked so you couldn't crank them down out of sequence without having to deliberately break something first. From your comments, I probably should have been kept much further away, and the rest of the folks there probably should have been wearing a lot more gear... |
Average mechanics rarely work on anything higher than 24volt and pretty much never work on anything over 48 volts.
|
Quote:
Hello oil pan 4, That is generally true, insofar as the vast majority of cars on the road that an average mechanic is likely to see are plain ICE types. The number of hybrids are growing, though, and my independent mechanic says there are a few in his client base already. My point is that the car's systems need to be safe enough that an average mechanic can do average under-hood and under-chassis service work - to the brake system, the steering system, the suspension system, etc. - without being at an unknown/above average risk. I seriously doubt that any OEM would let a car out on the road that required full arc-flash safety gear for routine maintenance - I aim not to, either. How do they make it safe? Same question for the higher voltage buses. I don't think I'd be able to convince even my good, independent mechanic to do any work directly on the high-voltage portions of any DIY system, and I don't aim to. It'll be on me to keep those parts working, or a local EV conversion shop/garage/specialist if I can find one. |
From what little I have seen on the hybrid systems the manufactures build go way out of their way to make it extra hard to screw up.
Yeah once you make a really high voltage setup you are not going to find any one to work on it. If you built a standard 144v system some place like what EVmetro has might work on it. But they are pretty rare. Don't know if they would mess with unusually high voltages. |
To respond to the original question:
- higher voltage makes leakage current more of a concern. I have yet to find a frame leakage or ground fault system that I would put in a car. I plan to install 100 Kilo-ohm resistors and contactors on either end of my Leaf battery pack and measure for current across a 1K resistor. That should give me about 4V if there is an un-intentional connection to the frame while I am running the test. Much less if there is not a solid connection to the frame. One of the links below shows how much current is uncomfortable through to damaging for the human body. My goal is to use any reasonable means to reduce the likelihood of a shock, or the severity of a shock if it is not reasonable to avoid it completely. Quote:
For DC, there appears to be no low voltage, medium voltage, and high voltage classifications similar to AC. Low voltage is mentioned as 48V and below (now it seems like 100V and below), but since they discuss mostly lead-acid ... it's more like 55V charged and almost 60V for the floating charge. 125VDC, which is what a lot of electrical switch gear uses in substations, does not get described as a classification in what I have read. Most of the people who deal with this voltage work for power companies ... and they don't have to follow electrical code for some reason ... maybe they don't want their systems to have arc flash categories. This document, listing just the changes for DC and arc flash, sets the shock rating at 100 VDC. I don't remember this one, I must admit. http://www.ieee-pes.org/presentations/gm2014/2756.pdf There are some guidelines for calculating arc flash on DC, but batteries are not common in industry above 125 VDC. The DC buss on VFDs or ASDs, DC drives ... plus larger installations of solar arrays. I have asked for some rules of thumb and our consultants have a few. And as the document above mentions, they are quite conservative. - use contactors to isolate packs and sources - use fuses to limit arc flash risk - fuses should trigger in 5 cycles, or about 1/10 of a second, for a large overload (10X expected current) - review the fuse curves whenever anything is changed on the system to make sure they are still going to protect you We don't do arc flash calculations on any AC source of 208V three phase below 75 KVa, since it does not sustain an arc and the transformers involved don't have the thousands of amps (KA) that appear to be a big part of the energy in an arc flash. DC is a different fish - the voltage does not cross 0V 60 times per second so once an arc is established it does not extinguish as quickly without outside help - from a fuse, or a contactor, or a breaker ... or vaporized copper. Quote:
Quote:
Quote:
However, 1500A into a short circuit is not all that much. If you expect 1500A on your system for 5 seconds (I can't imagine the speed you'd be going after 5 seconds of acceleration at 1500 amps), have the fuse trigger (melt and clear the fault) at 1500 amps for .. 7 or 8 seconds, It is *FAR* easier to get 1500+ amps from a 144V lithium iron pack (10C is only 150 a-h cells), or parallel packs of cells, or any of a host of lithium chemistries that people are using. The amps give you the heat, which gives you the blast. Voltage gives you the safe distance between un-insulated conductors or terminals. Quote:
Here is another reference from industry http://www.battcon.com/PapersFinal20...rc%20Flash.pdf From what I have read, and what I have experienced: - size your fuses well. Make sure that the fuses will interrupt the voltages you are using. And make sure that your pack can supply enough current to trigger the fuse element in a reasonable time. Like the 1/10 of a second I mentioned earlier. A 1000 amp fuse is useless if your used Leaf pack can only put out 800 amps! - split your pack into lower voltages. I thought 48V was reasonable, but it appears that 100V is OK as well. The separate packs connect in series when you turn the key or start the charger. Split the pack segments with contactors. - use vacuum contactors, rated for the TOTAL voltage you are using, + 25%. If you are a paranoid (like I am) use one on the positive pack and one on the negative pack plus one between each pack segment. Make sure that the main contactors both open. I'd like the contactors that split the packs to verify open as well but I'm not sure how to measure that one. Perhaps that will be part of the leak detection or Ground fault. - I'd add a DC breaker as well. It's harder to find these at higher voltages, but they exist. A 300A, 125V DC breaker on the battery side will let the controller do 1000 amps of motor current for a 5 second acceleration Quote:
I'm a bit worried about water-proofing where people normally put battery packs. I have opted to put the batteries in the cabin with me, replacing the back seat. There is a sturdy frame around the batteries, a lexan cover to keep conductive stuff from falling inside, etc. But my my provincial insurance rep (the last one I asked) mentioned that I would have to seal the battery case and vent it outside the cabin. That would be inconvenient, and would effectively make the batteries the same temperature as outside ... which means no driving the car in winter. When I get it done, I will put the car in front of a vehicle inspector and get a written list of things they want changed ... and I hope I can convince them that the venting thing is not required since the electrolyte is quite non-toxic. If the batteries start to vent, I need to get out in a hurry ... and whether they are vented internal or external to the car will not matter much. |
Like redpoint5, I don't have much expertise, but a lot of interest in the subject.
First I'd like to thank cajunfj40 for this EXTREMELY valuable and interesting thread. :thumbup: I'd also like to thank thingstodo and MightyMirage for their expertise, experience, and contributions on this topic. My specific interest in this topic is developing a system that uses multiple Toyota MGR's, or possibly the Prius motors. The new versions appear to be designed for higher voltages in about 2010 ( and have been tested by ORNL ) In these tests, the bus voltage (DC link voltage) was boosted to 650V at 5kHz, NOT using the boost converter. For the Prius, the BEMF was just over 500VRMS at 14000 rpm. This would imply a peak internal voltage of over 700V. With field weakening, ORNL was able to test the motor up to 13,000 rpm with a 650V bus. When the bus voltage was reduced to 500VDC, they were only able to run to motor up to 8000 rpm, and 5000 rpm at 225VDC. For my project, I'd like to spin the motors as fast as ORNL did, - not limited by a low bus voltage - maybe sanity - LOL! :p Because I don't know what I'm doing, I always spec components with significantly higher voltage ratings than the one I'm actually using. When one looks at a $$/kW perspective, generally higher voltage (lower current) components are lighter and less expensive. One mystery to me is "why do certain plastics have significantly better voltage ratings as insulators than others?" For example, you can get big cables for cars, where they can handle hundreds of amps, but they are only rated for 60V. :( You can then go to home depot and get a same guage wire with similar thickness insulation, and it will be rated for 600V. - E*clipse |
Quote:
When our electricians are handling 5000V rated cable, or 15000V rated cable, the knives that they use to strip the insulation look positively wicked. It also appears that the insulation is less flexible. |
I was recently using some "anti corona" or something cable that was very flexible, and used in my job's transformers. It was stranded 11 gauge, and had a working voltage of 5000v I think. I also used some 15,000v wire. It felt flexible, but when I would strip the black insulation, it was like it used to be stranded, but looked welded together. Strange. Oh well. I don't know the cost of it, but it was off of a 5000 foot roll I think. I would look to companies that make components for PDUs for high voltage parts. (power distribution units). My company recently made an on/off switch that's rated for like 100,000v. There's a whole world out there where high voltage is no impediment. So, I know you could reliably get a 800v or whatever controller safely working in a car.
|
Wow, this thread took off while I was away! Lots of good info here, thanks!
Quote:
Quote:
I found a bit more info on the 7.6V/60Ah (2S2P) LiMn2O4 with LiNiO2 Leaf battery modules. They offer 240A continuous, 540A pulse discharge rate. (per Hybrid Auto Center's website). From the Nissan Leaf First Responders Guide, I find 403.2V as the max pack voltage. (48 modules at 8.4V each). I can't find the dead-short current capacity of a module or pack, but it would likely be a bit higher than 540A. What would those more educated in lithium battery chemistry guess at here? Volt modules are rated a bit lower, being similar chemistry but only 45Ah per 1S3P "blade". |
I don't know about the Leaf, but Spark EV used A123 batteries, and someone recently sent me a 95v module of them, and they can do 1500 amp.
|
All times are GMT -4. The time now is 11:30 AM. |
Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2025, vBulletin Solutions Inc.
Content Relevant URLs by vBSEO 3.5.2
All content copyright EcoModder.com