What is Lift?
There are many explanations for the generation of lift found in encyclopedias, in basic physics textbooks, and on Web sites. Unfortunately, many of the explanations are misleading and incorrect. Theories on the generation of lift have become a source of great controversy and a topic for heated arguments. To help you understand lift and its origins, a series of pages will describe the various theories and how some of the popular theories fail.
Lift occurs when a moving flow of gas is turned by a solid object. The flow is turned in one direction, and the lift is generated in the opposite direction, according to Newton's Third Law of action and reaction. Because air is a gas and the molecules are free to move about, any solid surface can deflect a flow. For an aircraft wing, both the upper and lower surfaces contribute to the flow turning. Neglecting the upper surface's part in turning the flow leads to an incorrect theory of lift.
Incorrect Lift Theory
{Lifting airfoils are designed to have the upper surface longer than the bottom.} This is not always correct. The symmetric airfoil in our experiment generates plenty of lift and its upper surface is the same length as the lower surface. Think of a paper airplane. Its airfoil is a flat plate --> top and bottom exactly the same length and shape and yet they fly just fine. This part of the theory probably got started because early airfoils were curved and shaped with a longer distance along the top. Such airfoils do produce a lot of lift and flow turning, but it is the turning that's important, not the distance. There are modern, low-drag airfoils which produce lift on which the bottom surface is actually longer than the top. This theory also does not explain how airplanes can fly upside-down which happens often at air shows and in air-to-air combat. The longer surface is then on the bottom!