Apparently not (enrichment) :
Ford’s new 1.0-L EcoBoost I3 is big on low-friction technology - SAE International
Power density was the biggest single R&D task of the 1.0-L program, noted Zenner. “To achieve that and make this very compact engine durable was quite a challenge, in particular for the cylinder head," he explained. The long-stroke dimensions (71.9 x 82 mm) are good for knock mitigation, torque, and overall packaging. The 6.1-mm (0.24-in) bore bridges include a cooling slot, Zenner noted.
The two most advanced areas of the engine’s technology cited by Zenner are its exhaust manifold that is integrated into the cylinder head casting and its internal timing belt that runs in a bath of engine lubricant. The manifold saves nearly a kilogram (2.2 lb) of weight, accelerates engine warm-up, and
enables stochiometric operation in the whole operating range.
Working together, Continental and Ford
also have managed to obviate the need for additional enrichment (resulting in high fuel burn) to control turbo temperatures. The integrated exhaust manifold cools exhaust gas, and the turbo’s turbine has been developed to withstand temperatures of up to 1050ºC. Some turbos have a 1000ºC limit, and from about 3000 rpm, they need extra fuel for cooling, stated Zenner.