Go Back   EcoModder Forum > EcoModding > EcoModder Blog Discussion
Register Now
 Register Now
 

Reply  Post New Thread
 
Submit Tools LinkBack Thread Tools
Old 03-06-2009, 12:20 PM   #1 (permalink)
Dartmouth 2010
 
SVOboy's Avatar
 
Join Date: Nov 2007
Location: Hanover, NH
Posts: 6,447

Vegan Powa! - '91 Honda CRX DX
Team Honda
90 day: 66.52 mpg (US)
Thanks: 92
Thanked 122 Times in 90 Posts
Send a message via AIM to SVOboy Send a message via MSN to SVOboy Send a message via Yahoo to SVOboy
Toyota Claims Bigger Engine are Better for Fuel Economy

I was just looking through some of the official Toyota videos on youtube when I happened to stumble across this explanation of some of the tech in the new Prius. I already knew that Toyota had made some changes to the engine to favor a more powerful, quicker Prius. Despite that, the car received a [...]Related posts:
  1. PLX Announces New Kiwi MPG Fuel Economy Gauge
  2. Ford Upgrades Trucks for “Super Fuel Economy”
  3. One Big Reason Not to Trust “Real World” Fuel Economy Testing

More...

  Reply With Quote
Alt Today
Popular topics

Other popular topics in this forum...

   
Old 03-06-2009, 12:57 PM   #2 (permalink)
Master EcoModder
 
wagonman76's Avatar
 
Join Date: Jun 2008
Location: Northwest Lower Michigan
Posts: 1,006

Red Car - '89 Chevrolet Celebrity CL 4 door
Team Chevy
90 day: 36.47 mpg (US)

Winter Wagon - '89 Pontiac 6000 LE Wagon
90 day: 28.26 mpg (US)
Thanks: 8
Thanked 17 Times in 16 Posts
I agree that to a point, a larger engine will give better FE. I have had several GM 2.8 and 3.1 MPFI engines in identical cars, and the 3.1 always gives better FE. The only difference between the powertrains is the piston stroke.

Same thing with some others, when you have an undersized engine for the vehicle, the FE takes a dump. Take a larger engine so you barely have to work it, and to a point you can get better FE.
__________________

Winter daily driver, parked most days right now


Summer daily driver
  Reply With Quote
Old 03-06-2009, 01:06 PM   #3 (permalink)
Administrator
 
Daox's Avatar
 
Join Date: Dec 2007
Location: Germantown, WI
Posts: 11,203

CM400E - '81 Honda CM400E
90 day: 51.49 mpg (US)

Daox's Grey Prius - '04 Toyota Prius
Team Toyota
90 day: 49.53 mpg (US)

Daox's Insight - '00 Honda Insight
90 day: 64.33 mpg (US)

Swarthy - '14 Mitsubishi Mirage DE
Mitsubishi
90 day: 56.69 mpg (US)

Daox's Volt - '13 Chevrolet Volt
Thanks: 2,501
Thanked 2,587 Times in 1,554 Posts
Quote:
Originally Posted by wagonman76 View Post
...when you have an undersized engine for the vehicle, the FE takes a dump.
I kinda doubt this with more modern engines. Older engines, that didn't run at stoichiometric all the time will obviously use more fuel at higher engine loads. This is much less common in engines today. They run 14.7:1 nearly all of the time unless they are seeing some higher rpms and high load. Smaller engines leads to increased load, and increased load means greater efficiency IF air/fuel ratios are kept the same. Its not absolutely universal, but pretty darn close.
__________________
Current project: A better alternator delete
  Reply With Quote
Old 03-06-2009, 03:55 PM   #4 (permalink)
Master EcoModder
 
Join Date: Aug 2008
Location: South Dakota
Posts: 460

WonderWagon - '94 Ford Escort LX
Last 3: 51.52 mpg (US)

DaBluOne - '99 Ford Escort SE
90 day: 48.97 mpg (US)

DaRedOne - '99 Ford Escort ZX2 Hot
Thanks: 0
Thanked 15 Times in 4 Posts
Use the standard issue (drag-race to the stop sign) nut behind the wheel and compare smaller to larger engine, the larger engine might win out on FE by virtue of the ECU not having to spend 90% of the time in non-stoichiometric fuel enrichment.

Install an ecomodder/ecodriver nut behind the wheel of the car and compare smaller to larger engine and the smaller engine probably wins every time.
  Reply With Quote
Old 03-06-2009, 10:04 PM   #5 (permalink)
Engineering first
 
bwilson4web's Avatar
 
Join Date: Mar 2009
Location: Huntsville, AL
Posts: 843

17 i3-REx - '14 BMW i3-REx
Last 3: 45.67 mpg (US)

Blue Bob's - '19 Tesla Std Rng Plus
Thanks: 94
Thanked 248 Times in 157 Posts
Hi,

I was at the Detroit show and saw the new Prius:
Quote:
Originally Posted by SVOboy View Post
I was just looking through some of the official Toyota videos on youtube when I happened to stumble across this explanation of some of the tech in the new Prius. I already knew that Toyota had made some changes to the engine to favor a more powerful, quicker Prius. . . .
The problem is internal engine drag is proportional to speed. So what happens is as the rpm increases, the Atkinson cycle engine, which is very efficient at modest rpm begins to suffer higher internal losses. This reduces the brake specific fuel consumption:

My NHW11 Prius has the 1.5L engine and you can see that the brake specific fuel consumption is falling off at higher rpm.

This chart shows another effect, which we suspect is fuel enrichment at high power settings above 3,7500 rpm:

The high power region is where cooled exhaust gas is added to cool the exhaust and allow higher power output with less fuel burned. At high power settings, the engine has to use a rich mixture to keep from burning out the catalytic converter.

So the larger, 1.8L engine and appropriately improved hybrid transaxle lets the engine avoid higher, energy wasting rpms. With cooled exhaust gas, the engine continues into higher power settings but without the extra heat. What we don't know is if a similar system fitted to the existing Prius would provide a similar mileage improvement not counting the friction losses.

BTW, the Otto cycle engines suffer pumping losses through the throttle that the Atkinson cycle avoids. What this means is what works with the Prius engine won't necessarily work with an Otto cycle engine.

Bob Wilson
__________________
2019 Tesla Model 3 Std. Range Plus - 215 mi EV
2017 BMW i3-REx - 106 mi EV, 88 mi mid-grade
Retired engineer, Huntsville, AL
  Reply With Quote
Old 03-07-2009, 01:45 AM   #6 (permalink)
Master EcoModder
 
roflwaffle's Avatar
 
Join Date: Dec 2007
Location: Southern California
Posts: 1,490

Camryaro - '92 Toyota Camry LE V6
90 day: 31.12 mpg (US)

Red - '00 Honda Insight

Prius - '05 Toyota Prius

3 - '18 Tesla Model 3
90 day: 152.47 mpg (US)
Thanks: 349
Thanked 122 Times in 80 Posts
A rich mixture is used to maximize power output and cool the intake charge in order to minimize the risk of detonation, not cool the catalytic converter, which has typical operating temperatures around 1500-1600F, right around the maximum EGTs SI most engines will make. Having the larger 1.8L engine and taller gearing could very well help out with SFC, although the four-stroke Atkinson cycle is exactly like the SI Otto cycle minus the delayed closing of the intake valve after the piston has started to travel upwards again. The four-stroke versions allowed Toyota to cheaply and effectively de-stroke their 1.5L engines for use in the Prius, unlike the original Atkinson cycle that supposedly used a modified crank and had the intake, compression, power, and exhaust strokes in a single turn of the crankshaft.
  Reply With Quote
Old 03-07-2009, 01:29 PM   #7 (permalink)
Engineering first
 
bwilson4web's Avatar
 
Join Date: Mar 2009
Location: Huntsville, AL
Posts: 843

17 i3-REx - '14 BMW i3-REx
Last 3: 45.67 mpg (US)

Blue Bob's - '19 Tesla Std Rng Plus
Thanks: 94
Thanked 248 Times in 157 Posts
Hi,
Quote:
Originally Posted by roflwaffle View Post
A rich mixture is used to maximize power output and cool the intake charge in order to minimize the risk of detonation, not cool the catalytic converter, which has typical operating temperatures around 1500-1600F, right around the maximum EGTs SI most engines will make.
Lexus Vehicles : Lexus Advances Hybrid Drive with Comprehensive Improvements in New RX 450h / Toyota
Quote:
. . .
With conventional four-cycle engines, there are times when fuel enrichment becomes necessary to cool the exhaust gases to prevent degradation or destruction of the catalytic converters. With the Atkinson cycle, the expansion/power stroke is longer than the compression stroke so that combustion energy can more effectively used for production of engine power. This results in lower exhaust gas temperatures.

In the process of re-circulating exhaust gas, the cooled EGR system increases the specific heat capacity, also resulting in lower exhaust gas temperature. Regulating the amount of EGR can also control the exhaust gas temperature.

The combination of the Atkinson cycle and cooled EGR minimizes the need for fuel enrichment. The benefit is significant reduction of fuel consumption, especially during high-load driving (e.g.: hill climbs and freeway driving.)
. . .
When I had my 150 hp, Cherokee 140, we used a rich mixture at maximum power settings so it wouldn't burn out the valves. For maximum power at cruise, the instructions were to trim it 50F rich under peak. BTW, there is an excellent write up on "Exhaust Gas Recurculation" from AutoSpeed.

Quote:
Originally Posted by roflwaffle View Post
Having the larger 1.8L engine and taller gearing could very well help out with SFC, although the four-stroke Atkinson cycle is exactly like the SI Otto cycle minus the delayed closing of the intake valve after the piston has started to travel upwards again. . . .
It means:
  • 8-to-1 compression stroke - in an Otto engine, the throttle plate would cause a lot of pumping losses in low power regions whereas the Atkinson cycle makes a substantial reduction in throttle plate losses. This is especially useful in low power regions where low-drag vehicles cruse.
  • 13-to-1 expansion stroke - provides a high expansion ratio so a large percentage of energy is extracted. Only diesels have a higher expansion ratio but they also have a problem with NOx formation. Longer durations at higher temperatures favors NOx formation.
Modern Atkinson cycle engines have different compression strokes from the power expansion stroke. This means less maximum power but substantially improved brake specific fuel consumption. Some of believe that the variable valve stroke and angle on intake and exhaust valves, already in some Toyota vehicles, will complete the picture and bring their Atkinson cycle engines into diesel BSFC ranges without diesel problems.

Bob Wilson
__________________
2019 Tesla Model 3 Std. Range Plus - 215 mi EV
2017 BMW i3-REx - 106 mi EV, 88 mi mid-grade
Retired engineer, Huntsville, AL
  Reply With Quote
Old 03-07-2009, 07:06 PM   #8 (permalink)
Master EcoModder
 
roflwaffle's Avatar
 
Join Date: Dec 2007
Location: Southern California
Posts: 1,490

Camryaro - '92 Toyota Camry LE V6
90 day: 31.12 mpg (US)

Red - '00 Honda Insight

Prius - '05 Toyota Prius

3 - '18 Tesla Model 3
90 day: 152.47 mpg (US)
Thanks: 349
Thanked 122 Times in 80 Posts
Well I'll be! I've never though about starving the cat of oxygen but that certainly shows me!

Quote:
Originally Posted by bwilson4web View Post
It means:
  • 8-to-1 compression stroke - in an Otto engine, the throttle plate would cause a lot of pumping losses in low power regions whereas the Atkinson cycle makes a substantial reduction in throttle plate losses. This is especially useful in low power regions where low-drag vehicles cruse.
  • 13-to-1 expansion stroke - provides a high expansion ratio so a large percentage of energy is extracted. Only diesels have a higher expansion ratio but they also have a problem with NOx formation. Longer durations at higher temperatures favors NOx formation.
Scaled for torque output, the engine in the Prius exhibits the same difference in BSFC compared to load a V6 engine designed over a decade earlier exhibits. Specifically, a ~10% increase in fuel consumption when comparing half load and full load, and a doubling of fuel consumption at around 15-20% of load. The Prius is a bit better, around 3%, at lower loads, but I'm not sure if this is the result of the greater expansion ratio or fewer cylinders/offset crank. The wider ovals at max torque are from limiting torque output and the offset crank.

Clearly the 1NZ-FXE would have lower fuel consumption than a normal 1NZ-FE since it's effectively destroked, which improves fuel consumption through fewer throttling losses, but also caps torque output across the powerband, and while the higher expansion ratio may help it doesn't appear to help a whole lot when we scale the output compared to other engines. Capping the torque output by reducing the effective compression ratio and the offset crank are where most of the gains appear to come from based on comparing it to decade+ older/larger engines from Toyota. The only way to determine how much the higher expansion ratio helps would be to compared the 1NZ-FXE to a version destroked to have the same effective compression ratio.

In terms of low drag vehicles cruising in lower power regions, that isn't much of a problem where a hybrid cycles on and off and stores power to be used in a battery instead of operating at a steady/lighter load. This, along with the taller gearing, is what Toyota can increase the engine size in the new Prius and increase or keep mileage the same. It's the same idea behind P&G. It doesn't matter how poor low load engine efficiency is if the engine is almost never operated there. Granted, their is a loss from dumping energy into the battery pack and out the motor, but as long as that loss is less than the increase in BSFC, then there's no reason not to do it.

Diesels have problems with NOx formation because of CI, not necessarily the higher CR. SI engines can have the same CR as modern diesels, but low engine out NOx because the A:F mixture can be distributed relatively homogeneously, which minimizes hots spots during ignition. CI engines otoh see ignition start more or less when the bulk of fuel is injected. Modern versions tend to run a bit richer to cool ignition and prevent as much NOx from hot spots during ignition. Anyway... Variable valve timing almost certainly won't get a SI engine near a CI engine in terms of overall fuel consumption/load, that's something we need HCCI, or something similar, for. On the plus side, GDI gets closer at low load, but that's the best in use implementation I've seen so far.
  Reply With Quote
Old 03-08-2009, 01:29 AM   #9 (permalink)
Engineering first
 
bwilson4web's Avatar
 
Join Date: Mar 2009
Location: Huntsville, AL
Posts: 843

17 i3-REx - '14 BMW i3-REx
Last 3: 45.67 mpg (US)

Blue Bob's - '19 Tesla Std Rng Plus
Thanks: 94
Thanked 248 Times in 157 Posts
Quote:
Originally Posted by roflwaffle View Post
. . .
Scaled for torque output, the engine in the Prius exhibits the same difference in BSFC compared to load a V6 engine designed over a decade earlier exhibits.
Using your charts, it looks:
  • Prius - BFSC less than 230 g/kw-h between 2,200-3,400 rpm.
  • 6-banger - BSFC less than 240 g/kw-h is between 1,400-2,900 rpm.
  • 6-banger narrow - BSFC at 237 g/kw-h, 1,800-2,400 rpm.
Did I misread the charts?

When you get a chance, I'd recommend getting a copy of SAE 2004-01-0064 for this quote, "As a result, the minimum specific fuel consumption of 225g/kWh has been achieved. . . " (pp. 7.) This paper is the source of the first graph and does an excellent job of showing the specific systems in the Prius. More importantly, it shows how the Continuously Variable Transmission keeps the engine at the best BSFC over a very wide, rpm range (the operating range line on that first chart.) This operating line is the problem the old 6-banger could never solve with existing transmissions.

Quote:
Originally Posted by roflwaffle View Post
. . . destroked . . .
In the past, I used "destroked" to mean a mechanical change such as a shorter throw crankshaft to change the piston sweep. I use Atkinson cycle when the gas compression ratio is different from the power stroke gas expansion ratio.

Quote:
Originally Posted by roflwaffle View Post
. . . The only way to determine how much the higher expansion ratio helps would be to compare the 1NZ-FXE to a version destroked to have the same effective compression ratio.
The Otto version of the same 1NZ-FE is in our Toyota Echo and the early Scion series. The same engine is in the Yaris.

Quote:
Originally Posted by roflwaffle View Post
. . . Diesels have problems with NOx formation because of CI, not necessarily the higher CR. . . .
Upon further thought, I can somewhat agree. The gas ratios will have a greater impact than duration at high temperature and pressures. Just I remember my chemistry studies and some reactions have non-linear effects based upon pressure and temperature. Wikipedia notes:
Quote:
Thermal NOx refers to NOx formed through high temperature oxidation of the diatomic nitrogen found in combustion air. The formation rate is primarily a function of temperature and the residence time of nitrogen at that temperature. At high temperatures, usually above 1600°C (2900°F), molecular nitrogen (N2) and oxygen (O2) in the combustion air disassociate into their atomic states and participate in a series of reactions.
But the mechanical aspects probably play another important part.

As the expansion ratio increases, the stress on the piston, rod, crank and cylinder head goes up right after ignition. It is equally likely that the 13-to-1 ratio seen with the 1NZ-FXE is a mechanical limitation. They didn't want to add the additional metal needed for a higher expansion ratio that might cause the engine to approach diesel weights.

Bob Wilson
__________________
2019 Tesla Model 3 Std. Range Plus - 215 mi EV
2017 BMW i3-REx - 106 mi EV, 88 mi mid-grade
Retired engineer, Huntsville, AL

Last edited by bwilson4web; 03-08-2009 at 10:01 AM.. Reason: Text clean-up, improve data from charts.
  Reply With Quote
Old 03-08-2009, 01:56 AM   #10 (permalink)
(:
 
Frank Lee's Avatar
 
Join Date: Jan 2008
Location: up north
Posts: 12,762

Blue - '93 Ford Tempo
Last 3: 27.29 mpg (US)

F150 - '94 Ford F150 XLT 4x4
90 day: 18.5 mpg (US)

Sport Coupe - '92 Ford Tempo GL
Last 3: 69.62 mpg (US)

ShWing! - '82 honda gold wing Interstate
90 day: 33.65 mpg (US)

Moon Unit - '98 Mercury Sable LX Wagon
90 day: 21.24 mpg (US)
Thanks: 1,585
Thanked 3,555 Times in 2,218 Posts
Makes sense to me that if a guy were to keep putting in a smaller and smaller engine for a job that at some point the fe starts getting worse. Optimal piston speed might come into play here, although I admit I haven't done all my homework on that.

SVO, why don't you just say what you're going to say HERE?

  Reply With Quote
Reply  Post New Thread




Similar Threads
Thread Thread Starter Forum Replies Last Post
Fuel Economy related papers tasdrouille General Efficiency Discussion 41 03-19-2021 06:31 PM
Lugging the engine - good or bad for economy? landspeed General Efficiency Discussion 28 05-23-2014 11:03 AM
News: Toyota to provide fuel economy instrumentation in all models MetroMPG General Efficiency Discussion 13 12-18-2009 06:40 PM
Engine Rebuild.. Fuel Economy? brucey EcoModding Central 22 06-18-2008 03:00 PM
Basic EcoDriving Techniques and Instrumentation SVOboy Instrumentation 2 11-17-2007 11:38 AM



Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2024, vBulletin Solutions Inc.
Content Relevant URLs by vBSEO 3.5.2
All content copyright EcoModder.com